metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tri-tert-butylgallane-(tert-butyl)diethylstibine adduct

Daniella Schuchmann, Stephan Schulz and Ulrich Flörke*

Department Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany Correspondence e-mail: ulrich.floerke@upb.de

Received 26 April 2007; accepted 27 April 2007

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.005 Å; R factor = 0.037; wR factor = 0.074; data-to-parameter ratio = 28.6.

Geometric parameters of the title compound, tri-tert-butyldiethylgalliumantimony(Ga-Sb), $[{}^{t}Bu_{3}Ga-Sb({}^{t}Bu)Et_{2}]$ or $[GaSb(C_2H_5)_2(C_4H_9)_4]$, reflect the influence of the larger steric demand of the 'Bu ligand compared with that of the ethyl groups.

Related literature

For related literature, see Coates (1951); Kuczkowski et al. (2001); Kuczkowski et al. (2005); Schulz & Nieger (2000) and Schuchmann et al. (2007).

Experimental

Crystal data

 $[GaSb(C_2H_5)_2(C_4H_9)_4]$ $M_r = 478.04$ Monoclinic, $P2_1/n$ a = 9.1138 (16) Åb = 23.698 (4) Å c = 11.027 (2) Å $\beta = 91.479 (4)^{\circ}$

```
V = 2380.7 (7) Å<sup>3</sup>
Z = 4
Mo K\alpha radiation
\mu = 2.27 \text{ mm}^{-1}
T = 120 (2) K
0.22\,\times\,0.20\,\times\,0.16 mm
```

Data collection

```
Bruker SMART APEX
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2002)
  T_{\min} = 0.624, T_{\max} = 0.699
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	199 parameters
$wR(F^2) = 0.074$	H-atom parameters constrained
S = 0.95	$\Delta \rho_{\rm max} = 0.95 \ {\rm e} \ {\rm \AA}^{-3}$
5684 reflections	$\Delta \rho_{\rm min} = -0.95 \text{ e } \text{\AA}^{-3}$

20988 measured reflections

 $R_{\rm int} = 0.082$

5684 independent reflections

4418 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Sb1-C17	2.152 (3)	Ga1-C9	2.034 (3)
Sb1-C19	2.158 (4)	Ga1-C1	2.039 (3)
Sb1-C13	2.197 (3)	Ga1-C5	2.039 (3)
Sb1-Ga1	2.9243 (5)		
C17-Sb1-C19	98.05 (15)	C13-Sb1-Ga1	126.75 (8)
C17-Sb1-C13	100.69 (14)	C9-Ga1-C1	117.05 (13)
C19-Sb1-C13	98.53 (15)	C9-Ga1-C5	116.50 (13)
C17-Sb1-Ga1	117.47 (11)	C1-Ga1-C5	115.65 (13)
C19-Sb1-Ga1	110.36 (12)		

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

SS gratefully acknowledges financial support by the German Research Foundation (DFG Priority Programme 1119), and DS is grateful to the Fonds der Chemischen Industrie for a fellowship award.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2352).

References

- Bruker (2002). SMART (Version 5.62), SAINT (Version 6.02), SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Coates, G. E. (1951). J. Chem. Soc. pp. 2003-2013.

Kuczkowski, A., Schulz, S. & Nieger, M. (2001). Organometallics, 20, 2000-2006

- Kuczkowski, A., Schulz, S. & Nieger, M. (2005). Private communication (REFCODE RALHES). CCDC, Union Road, Cambridge, England.
- Schuchmann, D., Kuczkowski, A., Fahrenholz, S., Schulz, S. & Flörke, U. (2007). Eur. J. Inorg. Chem. pp. 931-935.
- Schulz, S. & Nieger, M. (2000). J. Chem. Soc. Dalton Trans. pp. 639-642.

Acta Cryst. (2007). E63, m1606 [doi:10.1107/S1600536807021149]

Tri-tert-butylgallane-(tert-butyl)diethylstibine adduct

D. Schuchmann, S. Schulz and U. Flörke

Comment

Lewis acidic trialkylgallanes GaR_3 generally react with Lewis basic group 15 organyles ER'_3 (E = N, P, As, Sb, Bi) with formation of adducts of the type $R_3Ga - ER'_3$. The acid-base interaction within the adducts becomes weaker and the thermodynamic stability decreases with increasing atomic number of the central group 15 element owing to an increase in s character of the electron lone pair. The same is true for distibine adducts with trialkylgallanes of the general type $[R_3Ga]_2[Sb_2R'_4]$. In solution, these adducts are stable at low temperature (253 K), whereas at ambient temperature, Sb-Sb bond cleavage occurs with subsequent formation of heterocyclic stibinogallanes $[R_2GaSbR'_2]_x$ and the corresponding Lewis acid-base adduct R_3 Ga–SbRR'₂, containing a mixed substituted trialkylstibine. The thermodynamic stability of Me₃Ga–EMe₃ adducts (E =N, P, As, Sb) decreases from NMe₃ to SbMe₃, while BiMe₃ did not react (Coates, 1951). Since then, numerous adducts with strong Lewis basic amines and phosphines have been prepared and structurally characterized, whereas the first completely alkyl-substituted gallane–stibine adducts ^tBu₃Ga–Sb R_3 [R = Me (Kuczkowski *et al.*, 2005), Et, ⁱPr (Schulz & Nieger, 2000)] became only recently available. In addition, a very few gallane–distibute adducts of the type $[{}^{t}Bu_{3}Ga]_{2}[Sb_{2}R'_{4}][R$ = Me, Et (Kuczkowski et al., 2001), ⁿPr (Schuchmann et al., 2007)], with the distibine serving as bidentate ligand, were prepared at low temperatures and structurally characterized. These adducts tend to undergo Sb-Sb bond cleavage reactions in solution at ambient temperature, yielding four- and six-membered heterocycles of the general type $[R_2GaSbR'_2]_2$ and $[R_2GaSbR'_2]_3$ (Kuczkowski et al., 2001; Schuchmann et al., 2007), and the corresponding adduct $R_3Ga = E(R)R'_2$. The Ga and Sb atoms show distorted tetrahedral environments with the organic substituents adopting a staggered conformation related to one other as was previously observed for such adducts. The mean Ga-C [2.037 (3) Å] and Sb-C bond lengths [2.169 (4) Å] and C–Ga–C [116.4 (1)°] and C–Sb–C bond angles [99.1 (1)°] are within typical ranges. However, the larger steric demand of the ^tBu substituent bound to the Sb atom is clearly reflected by the significantly larger Ga-Sb-C13 bond angle $[126.75 (8)^{\circ}]$ compared to those of the Et substituents $[Ga-Sb-C17 117.5 (2), Ga-Sb-C19 110.4 (2)^{\circ}]$. In addition, the sum of the C–Sb–C bond angles in the title compound [297.3 (1)°] is bigger than that in the corresponding adduct ^tBu₃Ga-SbEt₃ (292.8°). The influence of bulky organic substituents on the Ga—Sb distance becomes obvious when comparing the title compound, which shows a Ga—Sb bond length of 2.9243 (5) Å, with the Ga—Sb distances reported for ^tBu₃Ga-SbMe₃ [2.8435 (3) Å], ^tBu₃Ga-SbEt₃ [2.8479 (5) Å] and ^tBu₃Ga-Sb(ⁱPr)₃ [2.9618 (2) Å]. Sb(ⁱPr)₃ is sterically more demanding than ^tBuSbEt₂, leading to a larger sum of the C–Sb–C bond angles, whereas SbMe₃ and SbEt₃ are sterically less hindered.

Experimental

A solution of Sb₂Et₄ (1.5 mmol, 0.54 g) and ^tBu₃Ga (3 mmol, 0.72 g) in 30 ml of n-hexane was stirred for 5 d at ambient temperature and then stored for 12 h at -30°C. The resulting colorless solid ([^tBu₂GaSbEt₂]₂) was isolated by filtration, the filtrate concentrated to 5 ml and again stored for 12 h at -30°C. Colorless crystals of ^tBu₃Ga—Sb(Et)₂^tBu were obtained

 $(0.56 \text{ g}, 78\%. \text{ m.p. } 65^{\circ}\text{C})$, which can be further purified by sublimation at 55°C at 10⁻³ mbar. Spectroscopic analysis: ¹H NMR (500 MHz; C₆D₅H; 25°C) δ = 1.13 [9H, s, (CH₃)₃CSb], 1.19 - 1.28 [10H, m, CH₃CH₂Sb], 1.24 [27H, s, (CH₃)₃CGa] ppm. ¹³C{¹H} NMR (125 MHz; C₆D₅H; 25°C) δ = 7.4 [s, CH₃CH₂Sb), 12.0 [s, CH₃CH₂Sb], 29.3 [s, (CH₃)₃CGa], 30.4 [s, (CH₃)₃CSb], 31.6 [s, (CH₃)₃CGa] ppm.

Refinement

Hydrogen atoms were located in Fourier difference maps and refined at idealizeded positions, riding on their parent C atoms, with isotropic displacement parameters $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(C-methyl)$.

Figures

Fig. 1. Molecular structure with hydrogen atoms omitted. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Crystal packing viewed along [100].

Fig. 3. Reaction pathway.

tri-tert-butyldiethylgalliumantimony(Ga-Sb)

Crystal data [GaSb(C₂H₅)₂(C₄H₉)₄] $F_{000} = 992$ $M_r = 478.04$ $D_{\rm x} = 1.334 {\rm Mg m}^{-3}$ Mo Ka radiation Monoclinic, $P2_1/n$ $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 2yn Cell parameters from 986 reflections $\theta = 2.5 - 26.7^{\circ}$ *a* = 9.1138 (16) Å b = 23.698 (4) Å $\mu = 2.27 \text{ mm}^{-1}$ c = 11.027 (2) Å T = 120 (2) K $\beta = 91.479 (4)^{\circ}$ Block, colourless

 $V = 2380.7 (7) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART APEX diffractometer	5684 independent reflections
Radiation source: sealed tube	4418 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.082$
T = 120(2) K	$\theta_{\text{max}} = 27.9^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2002)	$h = -11 \rightarrow 11$
$T_{\min} = 0.624, T_{\max} = 0.699$	$k = -31 \rightarrow 31$
20988 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0303P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.037$	$(\Delta/\sigma)_{\rm max} = 0.001$
$wR(F^2) = 0.074$	$\Delta \rho_{max} = 0.95 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 0.95	$\Delta \rho_{min} = -0.95 \text{ e } \text{\AA}^{-3}$
5684 reflections	Extinction correction: none
199 parameters	
Primary atom site location: structure-invariant direct	

Special details

Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map

methods

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $0.22\times0.20\times0.16~mm$

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and isot	ronic o	r ea	uivalent	isotror	oic dis	nlacement	narameters	$(Å^2$)
1 / 0/0//0//	cuonne	coordinates	0.100 1501		c y		1501100	10 000	pracement	parameters	1.1	/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Sb1	0.71254 (2)	0.158353 (8)	0.431944 (19)	0.02535 (7)
Gal	0.78052 (4)	0.087011 (13)	0.22442 (3)	0.02383 (9)

C1	0.7108 (4)	0.01031 (13)	0.2837 (3)	0.0325 (7)
C2	0.7744 (5)	-0.03402 (14)	0.1981 (4)	0.0502 (10)
H2A	0.7433	-0.0717	0.2233	0.075*
H2B	0.8818	-0.0318	0.2014	0.075*
H2C	0.7385	-0.0268	0.1150	0.075*
C3	0.7617 (4)	-0.00311 (15)	0.4125 (3)	0.0420 (9)
H3A	0.7249	-0.0403	0.4355	0.063*
H3B	0.7240	0.0255	0.4677	0.063*
H3C	0.8693	-0.0032	0.4173	0.063*
C4	0.5432 (4)	0.00410 (15)	0.2780 (4)	0.0433 (9)
H4A	0.5160	-0.0334	0.3073	0.065*
H4B	0.5076	0.0088	0.1940	0.065*
H4C	0.4990	0.0330	0.3291	0.065*
C5	0.6503 (4)	0.12448 (13)	0.0946 (3)	0.0310(7)
C6	0.6332 (5)	0.08250 (15)	-0.0105 (3)	0.0450 (9)
H6A	0.5707	0.0990	-0.0748	0.068*
H6B	0.5881	0.0477	0.0187	0.068*
H6C	0.7300	0.0739	-0.0427	0.068*
C7	0.4968 (4)	0.13883 (16)	0.1399 (3)	0.0414 (9)
H7A	0.4388	0.1566	0.0742	0.062*
H7B	0.5057	0.1649	0.2087	0.062*
H7C	0 4479	0 1042	0 1656	0.062*
C8	0.7166 (4)	0 17842 (14)	0.0457 (3)	0.002
H8A	0 6499	0 1948	-0.0160	0.058*
H8B	0.8110	0 1699	0.0093	0.058*
H8C	0.7317	0.2054	0.1121	0.058*
C9	1 0008 (3)	0.09786 (13)	0.2096 (3)	0.020
C10	1.0000(5) 1.0882(4)	0.09700(15) 0.06349(15)	0.2090(3) 0.3047(4)	0.0291(7)
H10A	1 1934	0.0697	0.2944	0.067*
H10R	1.1554	0.0233	0.2943	0.067*
H10C	1.0611	0.0255	0.3861	0.067*
C11	1.0439 (4)	0.0733	0.9801	0.007
H11A	1.0439 (4)	0.07310 (17)	0.0337 (4)	0.077*
HIIA HIIR	0.0016	0.0828	0.0749	0.077*
HIIC	1 0170	0.1000	0.0219	0.077*
C12	1.01/9	0.0382 0.15045 (12)	0.0734	0.077°
U12	1.0490 (4)	0.15945 (15)	0.2228 (3)	0.0542 (7)
H12A	1.1337	0.1020	0.2132	0.051*
П12Б	1.0210	0.1730	0.3020	0.051*
C12	1.0007	0.1622	0.1392	0.031°
C13	0.8551(4)	0.10198(13) 0.17754(10)	0.0009(3)	0.0525(7)
	0.9914 (4)	0.17734 (19)	0.5847 (4)	0.0009 (11)
HI4A	1.0460	0.1793	0.6624	0.084*
HI4B	0.9951	0.2144	0.5448	0.084*
HI4C	1.0356	0.1490	0.5327	0.084*
	0.8294 (3)	0.10403 (16)	0.0001 (4)	0.0038 (11)
піза	0.8829	0.1051	0./434	U.U81 [↑]
нізв	0.8/5/	0.0765	0.0118	0.081*
HISC	0.7273	0.0930	0.6778	0.081*
C16	0./661 (5)	0.20555 (18)	0.6891 (4)	0.0656 (13)

H16A	0.8212	0.2066	0.7666	0.098*
H16B	0.6637	0.1955	0.7035	0.098*
H16C	0.7700	0.2427	0.6505	0.098*
C17	0.6764 (4)	0.24674 (14)	0.3980 (4)	0.0439 (9)
H17A	0.5912	0.2506	0.3411	0.053*
H17B	0.6499	0.2650	0.4752	0.053*
C18	0.8048 (5)	0.27849 (14)	0.3462 (4)	0.0504 (10)
H18A	0.8904	0.2749	0.4013	0.076*
H18B	0.7790	0.3184	0.3369	0.076*
H18C	0.8281	0.2627	0.2669	0.076*
C19	0.4982 (4)	0.13805 (17)	0.4982 (4)	0.0548 (11)
H19A	0.4616	0.1046	0.4529	0.066*
H19B	0.5105	0.1267	0.5843	0.066*
C20	0.3854 (5)	0.1806 (3)	0.4913 (6)	0.103 (2)
H20A	0.4240	0.2161	0.5244	0.154*
H20B	0.3013	0.1684	0.5383	0.154*
H20C	0.3543	0.1861	0.4064	0.154*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sb1	0.02265 (11)	0.02651 (10)	0.02678 (12)	0.00206 (8)	-0.00157 (8)	0.00041 (9)
Gal	0.02381 (18)	0.02428 (16)	0.02328 (18)	-0.00316 (14)	-0.00149 (14)	-0.00031 (14)
C1	0.0339 (19)	0.0278 (15)	0.0354 (19)	-0.0046 (14)	-0.0043 (15)	0.0041 (14)
C2	0.061 (3)	0.0312 (18)	0.058 (3)	-0.0046 (18)	-0.004 (2)	-0.0080 (17)
C3	0.047 (2)	0.0367 (18)	0.042 (2)	-0.0112 (16)	-0.0090 (18)	0.0092 (16)
C4	0.045 (2)	0.0392 (19)	0.046 (2)	-0.0183 (17)	-0.0044 (18)	0.0081 (17)
C5	0.0309 (18)	0.0373 (17)	0.0244 (16)	-0.0037 (14)	-0.0061 (14)	0.0018 (13)
C6	0.055 (3)	0.049 (2)	0.0304 (19)	-0.0116 (18)	-0.0093 (18)	-0.0045 (16)
C7	0.031 (2)	0.054 (2)	0.039 (2)	-0.0018 (17)	-0.0083 (16)	0.0111 (17)
C8	0.042 (2)	0.0387 (17)	0.035 (2)	-0.0038 (16)	-0.0075 (17)	0.0076 (15)
C9	0.0228 (16)	0.0322 (16)	0.0334 (18)	-0.0038 (13)	0.0008 (13)	-0.0040 (14)
C10	0.0277 (19)	0.0413 (19)	0.065 (3)	0.0013 (15)	-0.0022 (18)	0.0065 (18)
C11	0.041 (2)	0.061 (2)	0.053 (3)	-0.0050 (19)	0.015 (2)	-0.019 (2)
C12	0.0272 (17)	0.0366 (17)	0.0390 (19)	-0.0053 (14)	0.0008 (15)	0.0046 (15)
C13	0.0357 (19)	0.0355 (17)	0.0261 (17)	0.0045 (15)	-0.0028 (14)	-0.0049 (14)
C14	0.045 (3)	0.084 (3)	0.039 (2)	-0.014 (2)	-0.0093 (19)	-0.002 (2)
C15	0.069 (3)	0.048 (2)	0.043 (2)	-0.005 (2)	-0.020 (2)	0.0085 (18)
C16	0.082 (3)	0.073 (3)	0.041 (2)	0.035 (3)	-0.009 (2)	-0.019 (2)
C17	0.052 (2)	0.0342 (17)	0.045 (2)	0.0094 (17)	-0.0066 (18)	0.0023 (16)
C18	0.062 (3)	0.0332 (18)	0.055 (2)	-0.0087 (18)	-0.015 (2)	0.0036 (17)
C19	0.028 (2)	0.061 (2)	0.076 (3)	-0.0029 (18)	0.012 (2)	0.013 (2)
C20	0.038 (3)	0.119 (5)	0.153 (6)	0.023 (3)	0.030 (3)	0.025 (4)

Geometric parameters (Å, °)

Sb1—C17	2.152 (3)	C10—H10A	0.9800
Sb1—C19	2.158 (4)	C10—H10B	0.9800
Sb1—C13	2.197 (3)	C10—H10C	0.9800

	0.00.10 (5)		0.0000
Sb1—Gal	2.9243 (5)	CII—HIIA	0.9800
Gal—C9	2.034 (3)	CII—HIIB	0.9800
Gal—Cl	2.039 (3)	CII—HIIC	0.9800
Gal—C5	2.039 (3)	C12—H12A	0.9800
C1—C3	1.516 (5)	С12—Н12В	0.9800
CI-C4	1.534 (5)	C12—H12C	0.9800
C1—C2	1.536 (5)	C13—C16	1.513 (5)
C2—H2A	0.9800	C13—C14	1.515 (5)
С2—Н2В	0.9800	C13—C15	1.517 (5)
C2—H2C	0.9800	C14—H14A	0.9800
С3—НЗА	0.9800	C14—H14B	0.9800
С3—Н3В	0.9800	C14—H14C	0.9800
С3—НЗС	0.9800	C15—H15A	0.9800
C4—H4A	0.9800	C15—H15B	0.9800
C4—H4B	0.9800	C15—H15C	0.9800
C4—H4C	0.9800	C16—H16A	0.9800
C5—C8	1.519 (4)	C16—H16B	0.9800
C5—C6	1.532 (4)	C16—H16C	0.9800
С5—С7	1.536 (5)	C17—C18	1.516 (5)
С6—Н6А	0.9800	C17—H17A	0.9900
С6—Н6В	0.9800	С17—Н17В	0.9900
С6—Н6С	0.9800	C18—H18A	0.9800
C7—H7A	0.9800	C18—H18B	0.9800
С7—Н7В	0.9800	C18—H18C	0.9800
С7—Н7С	0.9800	C19—C20	1.440 (6)
С8—Н8А	0.9800	C19—H19A	0.9900
С8—Н8В	0.9800	C19—H19B	0.9900
С8—Н8С	0.9800	C20—H20A	0.9800
C9—C11	1.527 (5)	C20—H20B	0.9800
C9—C12	1.530 (4)	С20—Н20С	0.9800
C9—C10	1.534 (5)		
C_{17} Sb1 C_{10}	98.05 (15)	C9 C10 H10A	100.5
$C_{17} = S_{01} = C_{13}$	100.60(13)	$C_{2} = C_{10} = H_{10}$	109.5
$C_{1/} = S_{01} = C_{13}$	100.09(14)		109.5
C19 - S01 - C13	96.35 (13)	$\begin{array}{cccc} H10A - C10 - H10B \\ C0 - C10 - H10C \\ \end{array}$	109.5
C1/-S01-Ga1	11/.4/(11)		109.5
C19 - S01 - Gal	110.30(12)	HIOA—CIO—HIOC	109.5
CI3—SDI—Gai	126.75 (8)	HI0B-CI0-HI0C	109.5
C9—Ga1—C1	117.05 (13)	C9—CII—HIIA	109.5
C9—Ga1—C5	116.50 (13)	C9—C11—H11B	109.5
Cl—Gal—C5	115.65 (13)	HIIA—CII—HIIB	109.5
C9—Gal—Sbl	102.65 (9)	C9—C11—H11C	109.5
Cl—Gal—Sbl	100.97 (10)	H11A—C11—H11C	109.5
C5—Ga1—Sb1	99.58 (9)	H11B—C11—H11C	109.5
C3—C1—C4	107.4 (3)	C9—C12—H12A	109.5
C3—C1—C2	108.7 (3)	C9—C12—H12B	109.5
C4—C1—C2	107.5 (3)	H12A—C12—H12B	109.5
C3—C1—Ga1	113.4 (2)	C9—C12—H12C	109.5
C4—C1—Ga1	113.0 (2)	H12A—C12—H12C	109.5
C2—C1—Ga1	106.7 (2)	H12B—C12—H12C	109.5

C1—C2—H2A	109.5	C16—C13—C14	109.3 (3)
C1—C2—H2B	109.5	C16—C13—C15	110.5 (3)
H2A—C2—H2B	109.5	C14—C13—C15	108.7 (3)
C1—C2—H2C	109.5	C16—C13—Sb1	110.6 (2)
H2A—C2—H2C	109.5	C14—C13—Sb1	109.0 (2)
H2B—C2—H2C	109.5	C15—C13—Sb1	108.7 (2)
С1—С3—НЗА	109.5	C13—C14—H14A	109.5
С1—С3—Н3В	109.5	C13—C14—H14B	109.5
НЗА—СЗ—НЗВ	109.5	H14A—C14—H14B	109.5
С1—С3—Н3С	109.5	C13—C14—H14C	109.5
НЗА—СЗ—НЗС	109.5	H14A—C14—H14C	109.5
НЗВ—СЗ—НЗС	109.5	H14B—C14—H14C	109.5
C1—C4—H4A	109.5	C13—C15—H15A	109.5
C1—C4—H4B	109.5	С13—С15—Н15В	109.5
H4A—C4—H4B	109.5	H15A—C15—H15B	109.5
C1—C4—H4C	109.5	C13—C15—H15C	109.5
H4A—C4—H4C	109.5	H15A—C15—H15C	109.5
H4B—C4—H4C	109.5	H15B—C15—H15C	109.5
C8—C5—C6	108.1 (3)	C13—C16—H16A	109.5
C8—C5—C7	107.7 (3)	C13—C16—H16B	109.5
C6—C5—C7	108.3 (3)	H16A—C16—H16B	109.5
C8—C5—Ga1	112.7 (2)	C13—C16—H16C	109.5
C6—C5—Ga1	107.1 (2)	H16A—C16—H16C	109.5
C7—C5—Ga1	112.8 (2)	H16B—C16—H16C	109.5
С5—С6—Н6А	109.5	C18—C17—Sb1	115.6 (3)
С5—С6—Н6В	109.5	С18—С17—Н17А	108.4
H6A—C6—H6B	109.5	Sb1—C17—H17A	108.4
С5—С6—Н6С	109.5	С18—С17—Н17В	108.4
Н6А—С6—Н6С	109.5	Sb1—C17—H17B	108.4
Н6В—С6—Н6С	109.5	H17A—C17—H17B	107.4
С5—С7—Н7А	109.5	C17—C18—H18A	109.5
С5—С7—Н7В	109.5	C17-C18-H18B	109.5
H7A—C7—H7B	109.5	H18A—C18—H18B	109.5
С5—С7—Н7С	109.5	C17—C18—H18C	109.5
H7A—C7—H7C	109.5	H18A—C18—H18C	109.5
H7B—C7—H7C	109.5	H18B—C18—H18C	109.5
С5—С8—Н8А	109.5	C20—C19—Sb1	118.5 (3)
C5—C8—H8B	109.5	С20—С19—Н19А	107.7
H8A—C8—H8B	109.5	Sb1—C19—H19A	107.7
С5—С8—Н8С	109.5	С20—С19—Н19В	107.7
H8A—C8—H8C	109.5	Sb1—C19—H19B	107.7
H8B—C8—H8C	109.5	H19A—C19—H19B	107.1
C11—C9—C12	107.4 (3)	C19—C20—H20A	109.5
C11—C9—C10	108.5 (3)	С19—С20—Н20В	109.5
C12—C9—C10	107.4 (3)	H20A—C20—H20B	109.5
C11—C9—Ga1	108.2 (2)	С19—С20—Н20С	109.5
C12—C9—Ga1	113.2 (2)	H20A—C20—H20C	109.5
C10—C9—Ga1	112.0 (2)	H20B—C20—H20C	109.5
C17—Sb1—Ga1—C9	83.96 (15)	Sb1—Ga1—C5—C7	-43.5 (2)

C19—Sb1—Ga1—C9	-164.86 (15)	C1—Ga1—C9—C11	87.7 (3)
C13—Sb1—Ga1—C9	-46.52 (14)	C5-Ga1-C9-C11	-55.2 (3)
C17—Sb1—Ga1—C1	-154.82 (15)	Sb1—Ga1—C9—C11	-162.8 (2)
C19—Sb1—Ga1—C1	-43.65 (15)	C1—Ga1—C9—C12	-153.4 (2)
C13—Sb1—Ga1—C1	74.69 (15)	C5—Ga1—C9—C12	63.7 (3)
C17—Sb1—Ga1—C5	-36.15 (15)	Sb1—Ga1—C9—C12	-43.9 (2)
C19—Sb1—Ga1—C5	75.02 (15)	C1-Ga1-C9-C10	-31.8 (3)
C13—Sb1—Ga1—C5	-166.63 (14)	C5-Ga1-C9-C10	-174.7 (2)
C9—Ga1—C1—C3	64.0 (3)	Sb1—Ga1—C9—C10	77.7 (2)
C5—Ga1—C1—C3	-152.7 (2)	C17—Sb1—C13—C16	41.6 (3)
Sb1—Ga1—C1—C3	-46.4 (3)	C19—Sb1—C13—C16	-58.3 (3)
C9—Ga1—C1—C4	-173.5 (2)	Ga1—Sb1—C13—C16	178.2 (2)
C5—Ga1—C1—C4	-30.2 (3)	C17—Sb1—C13—C14	-78.6 (3)
Sb1—Ga1—C1—C4	76.1 (2)	C19—Sb1—C13—C14	-178.6 (3)
C9—Ga1—C1—C2	-55.6 (3)	Ga1—Sb1—C13—C14	58.0 (3)
C5—Ga1—C1—C2	87.6 (3)	C17—Sb1—C13—C15	163.1 (3)
Sb1—Ga1—C1—C2	-166.1 (2)	C19—Sb1—C13—C15	63.2 (3)
C9—Ga1—C5—C8	-30.7 (3)	Ga1—Sb1—C13—C15	-60.3 (3)
C1—Ga1—C5—C8	-174.2 (2)	C19—Sb1—C17—C18	-178.9 (3)
Sb1—Ga1—C5—C8	78.7 (2)	C13—Sb1—C17—C18	80.7 (3)
C9—Ga1—C5—C6	88.1 (2)	Ga1—Sb1—C17—C18	-60.9 (3)
C1—Ga1—C5—C6	-55.3 (3)	C17—Sb1—C19—C20	7.2 (5)
Sb1—Ga1—C5—C6	-162.5 (2)	C13—Sb1—C19—C20	109.4 (5)
C9—Ga1—C5—C7	-152.9 (2)	Ga1—Sb1—C19—C20	-116.1 (4)
C1—Ga1—C5—C7	63.7 (3)		

Fig. 2

Fig. 3

